
Iterative Similarity Inference via Message Passing in

Factor Graphs for Collaborative Filtering

Jun Zou∗, Arash Einolghozati∗, Erman Ayday†, and Faramarz Fekri∗

∗School of Electr. & Comp. Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
†School of Comp. & Commun. Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Email: ∗{junzou, einolghozati, fekri}@ece.gatech.edu, †erman.ayday@epfl.ch

Abstract—In this paper, we develop a Belief Propagation (BP)
algorithm for similarity computation to improve the recommen-
dation accuracy of the neighborhood method, which is one of
the most popular Collaborative Filtering (CF) recommendation
algorithms. We formulate a probabilistic inference problem as
to compute the marginal posterior distributions of similarity
variables from their joint posterior distribution given the ob-
served ratings. However, direct computation is prohibitive in
large-scale recommender systems. Therefore, we introduce an
appropriate chosen factor graph to express the factorization
of the joint distribution function, and utilize the BP algorithm
that operates in the factor graph to exploit the factorization for
efficient inference. In addition, since the high degree at the factor
node incurs an exponential increase in computational complexity,
we also propose a complexity-reduction technique. The overall
complexity of the proposed BP algorithm on a factor graph
is linear in the number of variables, which ensures scalability.
Finally, through experiments on the MovieLens dataset, we
show the superior prediction accuracy of the proposed BP-based
similarity computation algorithm for recommendation.

I. INTRODUCTION

With the thriving of the Internet and online services, users
now can easily have access to huge amount of product informa-
tion they never experienced in traditional real-entity consuming
activities. However, this poses a problem when users have to
find the items, e.g., books and movies, interest them. Recom-
mender systems are powerful tools for providing personalized
recommendations of items according to user profiles and their
past behaviors. Many online service providers have already
adopted recommender systems to suggest items that meet user
preferences, so as to improve user satisfaction and mean-
while reduce user efforts. There are increasing demands for
scalable and accurate recommender systems from large-scale
e-commerce websites such as Amazon.com and eBay.com.
The databases associated with those websites usually hold
millions of transaction and rating records. Meanwhile, accurate
recommendations are critical to attract users with products they
like, so that they spend more and continue using the website
and its recommendation service.

One of the major approaches for designing recommender
systems is Collaborative Filtering (CF) [1]. The CF approach
takes as input the historic ratings on items given by users,
and predicts ratings on unseen items for each active user. It
includes model-based methods and memory-based methods.

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1115199, and a gift from the Cisco University
Research Program Fund, an advised fund of Silicon Valley Community
Foundation.

The model-based method generates rating predictions from
a model learned from the collected historic ratings, but the
learning process is often time-consuming, which is not suitable
for systems with frequent updates. The memory-based method,
a.k.a. the neighborhood method, can be further divided into
user-based and item-based methods. The user-based method
recommends to an active user new items favorably rated by
other users with similar tastes to the active user [2]. The
item-based method on the other hand analyzes the similarity
between items using the aggregated user ratings, and recom-
mends to an active user new items that are similar to the items
he liked in the past [3].

The key component for neighborhood methods is the com-
putation of similarities between users or items. In this paper,
we formulate the similarity computation as a probabilistic
inference problem of computing the marginal distributions of
similarity variables from their joint posterior distribution given
the observed ratings. To efficiently solve this problem, we
introduce a factorization of the joint distribution in an appropri-
ate chosen factor graph, and apply the Belief Propagation (BP)
algorithm [4] that operates in the factor graph to exploit the
factorization for efficient inference. In addition, a complexity
reduction technique is proposed to contain the exponential
increase in computational complexity caused by the high
degree at the factor node in our setup of recommender systems.
This BP-based approach was motivated by the successful
application of BP for iterative decoding algorithms in error-
control systems [5]. BP is very efficient in computing marginal
functions from global functions of many variables. Moreover,
BP can even be applied in situations where exact solutions for
marginal functions are computationally intractable, such as the
iterative decoding of Low-Density Parity-Check (LDPC) codes
and turbo codes. As we shall see, the concerned problem in
this work also belongs to such intractable cases.

The recent applications of BP to CF systems were also
introduced in [6]–[9]. [6] and [7] proposed message-passing
algorithms for performing probabilistic low-rank matrix fac-
torization to represent users and items with low-dimension
vectors. [8] and [9] proposed to directly predict ratings in the
factor graph, where probabilistic messages on unknown ratings
are iteratively exchanged, whereas in this work we focus on
inferring the similarities, based on which the unknown ratings
are predicted by the neighborhood method.

II. BACKGROUND ON COLLABORATIVE FILTERING

We assume a set of M users, denoted by U = {1, . . . ,M},
and a set of N items, denoted by I = {1, . . . , N}, in the

recommender system. Specifically, user u provides feedback
on item i in the form of rating rui. Let Ui denote the set of
users who have rated item i, and Iu denote the set of items
rated by user u. We arrange the collection of all ratings in an
incomplete M × N matrix R, with rui at the intersection of
u-th row and i-th column. The entries of unknown ratings are
unfilled. The neighborhood method takes as input the historic
ratings in R, and generates rating predictions for an active user
u on unseen items in I\Iu.

The neighborhood method can be either user-based [2] or
item-based [3]. To predict the rating rui for user u on an
unseen item i, the user-based algorithm sorts the users in Ui

according to their similarity to user u in descending order, and
finds a subset of top K most similar users, denoted by Nui,
where |Nui| = K . We refer to Nui as the neighbourhood
of user u for predicting rating on item i, and K as the
neighborhood size. Then rui is predicted by

r̂ui = r̄u +

∑

v∈Nui
suv × (rvi − r̄v)

∑

v∈Nui
|suv|

, (1)

where suv is the similarity between users u and v, and r̄u is
the average rating by user u on all items it has rated in the
past. Alternatively, the item-based algorithm predicts rui as

r̂ui =

∑

j∈Iui
sij × ruj

∑

j∈Iui
|sij |

, (2)

where sij denotes the similarity between items i and j, and
Iui represents a subset of K items in Iu that are deemed most
similar to item i.

The similarity computation plays a pivotal role in deter-
mining the accuracy of the neighborhood methods. There are
several well-known simlarity computation methods including
Vector Space Similarity (VSS) [10] and Pearson Correlation
Coefficient (PCC) [3]. It is observed that PCC performs better
than VSS, as PCC takes into account the difference in average
ratings. In the case of user similarity, PCC computes suv
between users u and v as

suv =

∑

i∈Iuv
(rui − r̄u)(rvi − r̄v)

√

∑

i∈Iuv
(rui − r̄u)2

√

∑

i∈Iuv
(rvi − r̄v)2

, (3)

where Iuv = Iu∩Iv denotes the subset of common items rated
by both users u and v. The item similarity can be similarly
computed using PCC. The PCC algorithm gains popularity as
it is easy to implement and its computational complexity is
low, while providing reasonable recommendation performance.
In the following, we will develop a BP-based algorithm
for similarity computation to improve the accuracy of the
neighborhood method, yet with a computational complexity
comparable to that of PCC.

III. PROPOSED SIMILARITY COMPUTATION ALGORITHM

We focus on the similarity computation for the user-based
neighborhood method, which generates rating predictions via
(1). Its extension to the item-based neighborhood method can
be likewise developed and thus is not discussed here for
conciseness. To predict ratings for active user u using (1),
we need to first compute the user similarities between user
u and other users. Let Su denote the set of concerned user
similarities for user u, Su = {suv : 1 ≤ v ≤ M, v 6= u}.

Variable node Factor node

f1 f2 fi

su1 suv suM

Fig. 1: The factor graph Gu for similarity computation.

We model suv as a discrete random variable that takes
values from a predefined alphabet set S with size L = |S|. We
denote P (Su|R) as the joint posterior probability distribution
of all variables in Su given the evidence of observed ratings in
R. Then to compute the individual user similarity suv , we need
to find its marginal posterior distribution P (suv|R), which can
be derived as

P (suv|R) =
∑

su1∈S

. . .
∑

su(v−1)∈S

∑

su(v+1)∈S

. . .
∑

suM∈S

P (Su|R) .

(4)
For notational convenience, we rewrite (4) for the sum over
all variables in Su except suv as

P (suv|R) =
∑

Su\suv

P (Su|R) . (5)

Similar notations are used for this type of sum throughout
this paper. Unfortunately, the complexity of direct computation
using (5) is O

(

LM
)

, which is exponential in the number of
users. We therefore propose to factorize the joint distribution
P (Su|R) into local functions on a factor graph, which allows
the application of the efficient BP algorithm for inferring
marginal distributions.

A. Modeling Similarity via Factor Graphs

A factor graph is a bipartite graph that expresses the factor-
ization structure of a function, where variable nodes and factor
nodes represent variables and local functions, respectively, and
an edge connects a variable node to a factor node if and only if
the variable is an argument of the local function represented by
the factor node [4]. To construct a factor graph for P (Su|R),
we first find a proper factorization of P (Su|R). We notice
that dependencies among user similarities are induced by user
ratings on the common items. Hence, for each item i ∈ Iu, we
let Sui = {suv : v ∈ Ui\u} be the subset of user similarities
between user u and the users who have rated item i, and use
a local function fi (Sui) to model the dependencies among
variables in Sui based on observed ratings on item i. Then the
factorization of P (Su|R) can have the following form

P (Su|R) =
1

Z

∏

i∈Iu

fi (Sui) , (6)

where Z is a normalization constant.

Now we construct a factor graph Gu for P (Su|R) according
to (6) as illustrated in Fig. 1. Each variable suv is represented
by a variable node v, and each local function fi (Sui) is
represented by factor node i. The variable nodes in Vi = Ui\u
are connected to factor node i via edges, and thus the degree
at each factor node i is |Vi|.

The local function fi at factor node i is designed specif-
ically for the eventual goal, which is to predict ratings using
(1). Assuming the rating rui on item i in Ui is unknown, we
predict rui as

r̂ui (Sui) = r̄u +

∑

v∈Vi
suv(rvi − r̄v)

∑

v∈Vi
|suv|

. (7)

Note that (7) has a similar form to (1), except that the observed
ratings on item i from all users in Vi are used in (7), since user
similarities are not determined yet. We then define the factor
node function fi as

fi (Sui) =
1

Zi

exp

{

−
1

σ2
(r̂ui (Sui)− rui)

2

}

, (8)

where Zi is a normalization constant, and σ2 is a designing
parameter which controls the sensitivity of the function to
the discrepancy between r̂ui (Sui) and the actual rating rui.
The factor node function fi here can be seen as a soft check
constraint, which checks the weighted average rating in (7)
against the true rating rui for a given configuration of user
similarities in Suv . fi decreases as the discrepancy between
r̂ui and rui increases. It is insightful to compare our factor
graph formulation to iterative BP decoding of LDPC codes.
Indeed, the factor node in our setup plays a similar role as the
check node in LDPC decoding.

B. Iterative Message Passing for Similarity Computation

Our goal is to compute the marginal posterior probability
distribution P (suv|R) from P (Su|R) for each suv in Su. We
tap into the BP algorithm for efficient inference on the factor
graph. Due to loops in the constructed factor graph Gu, we need
to apply the “loopy” BP algorithm, which performs iterative
message exchanging between variable nodes and factor nodes.
Although its computed results are not exact, “loopy” BP has
shown great success in applications such as LDPC decoding, in
which the underlying factor graph also has loops, as it achieves
near optimal performance with linear complexity.

We define two types of messages following the principle of
the sum-product BP algorithm [4]: (i) The λ-message λi,v(suv)
sent from a factor node i to a variable node v, and (ii) the µ-
message µv,i(suv) sent from a variable node v to a factor node
i. The λ-messages and µ-messages are iteratively updated and
passed along edges in the factor graph. In the n-th iteration,

to compute λ
(n)
i,v (suv), factor node i multiplies local function

fi with all µ-messages received in the last iteration except the
one from the recipient variable node v, and sums out variables
in Sui excluding suv as below

λ
(n)
i,v (suv) ∝

∑

Sui\suv

fi (Sui)
∏

w∈Vi\v

µ
(n−1)
w,i (suw). (9)

The λ-message λ
(n)
i,v (suv) tells user v the likelihoods of suv =

s, ∀s ∈ S. It says given how similar other users’ ratings on
item i are to user u’s, how similar user v is to user u from
item i’s point of view.

Then the algorithm continues to update µ-messages using
the λ-messages generated in the current iteration. To obtain

µ
(n)
v,i (suv), variable node v computes the product of all incom-

ing λ-messages except the one from the recipient factor node

i as follows

µ
(n)
v,i (suv) ∝

∏

j∈Fv\i

λ
(n)
j,v (suv) (10)

where Fv denotes the set of factor nodes connected to variable

node v. Here, Fv = Iv ∩ Iu. The µ-message µ
(n)
v,i (suv) tells

item i the probabilities of suv = s, ∀s ∈ S. It says given how
similar user v is to user u from other items’ point of view,
how similar user v’s rating is to user u’s on item i.

In each iteration, the messages are computed for each node
in the factor graph. To check convergence of the algorithm,
we compute the marginal probability distributions after each
iteration as follows

P (suv|R) =
1

Zv

∏

i∈Fv

λ
(n)
i,v (suv), (11)

where Zv is a normalization constant. The algorithm exits
iteration when P (suv|R)’s converge. Finally, we can estimate
user similarity suv from (11) according to various criteria. We
consider the minimum mean squared error criterion here, and
thus the optimal estimation of user similarity suv is given by
its expectation

s̄uv =
∑

s∈S

sP (suv = s|R). (12)

C. Complexity Reduction

We analyze the complexity of the proposed BP-based algo-
rithm in terms of number of multiplications. The complexity
to update a µ-message using (10) is only O (|Iu|), but the

complexity to update a λ-message using (9) is O
(

|Vi|L|Vi|
)

,
which is exponential in the degree of the factor node. From
the construction process of the factor graph Gu in Sec. III, we
know that Vi = Ui\u. Unfortunately, in recommender systems,
an item can be rated by over hundreds of users. Therefore,
direct application of the BP algorithm is not feasible. We

thus propose to construct a new factor graph Ĝu from Gu for
complexity reduction as follows.

The key here is to reduce the degree of factor nodes. For a
high-degree factor node i, the variable nodes in Vi are divided

into small groups of size D, resulting in Gi = ⌈ |Vi|
D

⌉ groups.
We denote the subset of variable nodes in group k of factor

node i as V
(k)
i , 1 ≤ k ≤ Gi. For each variable node v ∈ Vi, we

set an indicator v
(k)
i = 1 if v ∈ V

(k)
i and v

(k)
i = 0 otherwise.

Note that
∑Gi

k=1 v
(k)
i = 1. Further, we connect a separated

factor node i(k) to variable nodes in V
(k)
i . We do the same

for all other factor nodes in the original factor graph Gu. The
complexity-reduction technique on a factor graph is illustrated

in Fig. 2. Let S
(k)
ui = {suv : v ∈ V

(k)
i }. The factor function

f
(k)
i of factor node i(k) is derived from (8) as

f
(k)
i

(

S
(k)
ui

)

=
1

Z
(k)
i

exp

{

−
1

σ2

(

r̂
(k)
ui (S

(k)
ui)− rui

)2
}

, (13)

where Z
(k)
i is a normalization constant, and

r̂
(k)
ui (S

(k)
ui) = r̄u +

∑

v∈V
(k)
i

suv(rvi − r̄v)
∑

v∈V
(k)
i

|suv|
. (14)

fi

su1 su2 suv

(a) A high-degree factor node in Gu

DD

fi
(1)

fi
(k)

su1 suv

(b) Multiple low-degree factor nodes in Ĝu

Fig. 2: Illustration of complexity-reduction in the factor graph.

To better understand the proposed technique for complexity
reduction, we provide an intuitive explanation using user-item
relations. We divide the users of item i into multiple groups,
and create a separated virtual item i(k) for each group k. Users

in V
(k)
i give the same ratings on item i(k) as the original item

i, i.e., item i(k) can be seen as a copy of item i, but only
rated by group k. As in Sec. III-A, now the factorization of
P (Su|R) can be expressed by

P (Su|R) =
1

Z

∏

i∈Iu

Gi
∏

k=1

f
(k)
i

(

S
(k)
ui

)

. (15)

And from (15), we can construct a new factor graph which is

exactly the complexity reduction factor graph Ĝu.

While the new factor graph Ĝu is not mathematically
equivalent to the original factor graph Gu, they share the same
underlying principle, that is, they properly assign probabilities
for each configuration of user similarities by checking the
weighted rating against the true item rating via factor node
functions (or, soft check node constraints). Moreover, we can
apply the similar iterative BP algorithm described in Sec. III-B

with minor modifications. The new λ-message λ
(n)

i(k) ,v
(suv)

sent from factor node i(k) to variable node v is given by

λ
(n)

i(k),v
(suv) ∝

∑

S
(k)
ui

\suv

f
(k)
i

(

S
(k)
ui

)

∏

w∈V
(k)
i

\v

µ
(n−1)

w,i(k) (suw). (16)

And the new µ-message µ
(n)

v,i(k)(suv) sent from variable node

v to factor node i(k) is given by

µ
(n)

v,i(k)(suv) ∝
∏

j∈F̂v\i(k)

λ
(n)
j,v (suv), (17)

where F̂v =
{

j(k) : v
(k)
j = 1, j ∈ Iv ∩ Iu, 1 ≤ k ≤ Gj

}

.

Now the complexity of updating one λ-message is effec-
tively reduced to O

(

DLD
)

from O
(

|Vi|L|Vi|
)

by using (16),
where the group size D is a small integer and is adjustable,
while the total number of λ-messages need to be updated
remains the same. The computational complexity with regard

to µ-messages does not change. Then to solve for Su on Ĝu,
the overall complexity for one iteration of the iterative BP
algorithm becomes O

(

M̄N̄DLD +MN̄2
)

, where M̄ is the

average number of users of one item, and N̄ is the average
number of items rated by one user. Since the number of items a
user can consume is limited by his time and money, we assume
N̄ is much smaller than N , and we also assume M̄ grows in
the order of M1−ǫ, where 0 < ǫ < 1. Then we can rewrite the
computation complexity on Ĝu as O

(

M1−ǫN̄DLD +MN̄2
)

,
and when M is large, it is dominated by the second term, so
the complexity becomes O

(

MN̄2
)

.

IV. EVALUATION

We evaluate the performance of the proposed BP-based
similarity computation algorithm using the 100K MovieLens
dataset1. The dataset contains 100, 000 ratings, all integers
from 1 to 5, on 1682 items (movies) by 943 users, and each
user has rated at least 20 items. We randomly divide the users
into two disjoint sets, 80% for training and 20% for testing.
Specifically, for each user in the test set, we only keep a subset
of its ratings as known (15 ratings in our setup), and use the
rest of its ratings as test ratings. The known ratings are used as
memory for the user-based neighborhood method to compute
user similarity and to predict ratings using (1).

We compare the prediction performances of the user-based
neighborhood method when the user similarities are computed
using our proposed algorithm and the PCC algorithm [3], in
terms of both Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) metrics. Specifically, we compute the
MAE and RMSE as below

MAE =
1

T

∑

rui∈T

|rui − r̂ui|,

RMSE =

√

1

T

∑

rui∈T

(rui − r̂ui)2,

where T is the set of all test ratings for users in the test dataset,
rui is the actual value of the rating provided by user u on
the item i in the test dataset, and r̂ui is the predicted rating
value. Smaller RMSE and MAE errors mean better prediction
accuracy. Note that the RMSE metric is more sensitive to large
errors than MAE.

The results for the proposed algorithm and the PCC algo-
rithm are presented in Fig. 3, where for the proposed algorithm,
the similarity values of suv are taken from S = {1, 2}, σ in
(8) is set as σ = 0.5, and the group size D (i.e., the maximum
allowed degree of factor node) is set as D = 4. We also show
the results of the MovieAvg algorithm, which simply predicts
ratings as the average of past ratings of each item. It can be
observed from Fig. 3 that our proposed algorithm outperforms
PCC in both MAE and RMSE under different neighborhood
sizes. When the neighborhood size increases from 10 to 30 the
performances of both algorithms improve, but the gain from
increasing neighborhood size quickly diminishes and finally
the performance even starts to degrade when K reaches 50.
This is because as neighborhood size increases, ratings from
users with smaller similarity to the active user are also included
to predict the rating, which corrupts the prediction from other
users with higher similarity. The computational complexity of
the proposed algorithm to solve for the similarities between
the active user u and other users is O

(

MN̄2
)

as discussed

1Available at: http://www.grouplens.org/node/73.

5 10 15 20 25 30 35 40 45 50 55
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Neighborhood Size

M
A

E

MovieAvg

PCC

Proposed (D=4)

(a) MAE versus the effective neighborhood size.

5 10 15 20 25 30 35 40 45 50 55
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Neighborhood Size

R
M

S
E

MovieAvg

PCC

Proposed (D=4)

(b) RMSE versus the effective neighborhood size.

Fig. 3: Rating prediction performance comparison.

TABLE I: Proposed algorithm with varying group size D when
S = {1, 2}.

Group size
MAE RMSE

K = 10 K = 30 K = 10 K = 30

D = 3 0.7533 0.7373 0.9593 0.9380
D = 4 0.7487 0.7358 0.9548 0.9362
D = 5 0.7522 0.7370 0.9587 0.9379

in Sec. III-C, while the complexity for the PCC algorithm is
O
(

MN̄
)

, and thus the complexity of both algorithms is linear
in the number of users.

We also investigate the impacts of different parameters
on the proposed algorithm. In Table I, we show the results
of the proposed algorithm for varying group size D, where
we set S = {1, 2}, and σ = 0.5. It can be seen that
D = 4 achieves the best performance. It is also interesting
to notice that the performances under different D’s are close,
meaning the algorithm is not sensitive to the choice of D.
Since a large D dose not necessarily improve the performance
and it exponentially increases computational complexity for
generating λ-messages as discussed in Sec. III-C, it is wise to
start from a small integer when searching for a good D for
the algorithm.

In Table II, we show the results for different S, where
D = 3 and σ = 0.5. We denote SL = {s : 1 ≤ s ≤ L},
where s only takes integer values and thus |SL| = L. It can be
observed that the performances of the proposed algorithm for
different S’s are quite close, and S5 actually has slightly better

TABLE II: Proposed algorithm with varying S when D = 3.

S
MAE RMSE

K = 10 K = 30 K = 10 K = 30

S2 0.7533 0.7373 0.9593 0.9380
S5 0.7524 0.7375 0.9584 0.9381
S10 0.7532 0.7379 0.9590 0.9386

performance than S10. This is because a large alphabet set S
can causes overfitting, that is the computed user similarity is
biased towards the training ratings and dose not generalize well
on the test ratings.

V. CONCLUSION

In this paper, we proposed a BP-based similarity computa-
tion algorithm for the neighborhood method in recommender
systems. In order to take advantage of BP to efficiently
compute the marginal distributions of similarity variables from
their joint posterior distribution, we introduced a proper factor-
ization of the joint distribution function, which was expressed
by an appropriate chosen factor graph. Since the resulting fac-
tor graph has loops, the “loopy” BP algorithm using iterative
message passing was applied. We also proposed a complexity-
reduction technique to contain the exponential increase in
computational complexity due to the high degree at the factor
node. The experimental results on 100K MovieLens dataset
showed that the proposed similarity computation algorithm
for the user-based neighborhood method achieves improved
accuracy over the popular PCC algorithm in terms of both
MAE and RMSE. Meanwhile, the computational complexity of
the BP-based algorithm is comparable to that of PCC, growing
linear in the number of users.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE Trans. Knowl. and Data Eng., vol. 17, pp. 734–749,
Jun. 2005.

[2] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl, “Grou-
plens: An open architecture for collaborative filtering of netnews,” in
Proc. 1994 Computer Supported Cooperative Work Conf., 1994.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proc. WWW, 2001.

[4] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001.

[5] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound
codes by probability propagation in graphical models,” IEEE J. Select.

Areas Commun., vol. 16, no. 2, pp. 219–230, Feb. 1998.

[6] D. H. Stern, R. Herbrich, and T. Graepel, “Matchbox: Large scale online
bayesian recommendations,” in Proc. 18th International Conference on

World Wide Web (WWW), 2009, pp. 111–120.

[7] B.-H. Kim, A. Yedla, and H. D. Pfister, “IMP: A message-passing
algorithm for matrix completion,” in Proc. 6th Int. Symp. on Turbo

Codes and Iterative Inform. Proc. (ISTC), 2010, pp. 462–466.

[8] E. Ayday and F. Fekri, “A belief propagation based recommender system
for online services,” in Proc. 4th ACM Conference on Recommender

Systems (RecSys), 2010, pp. 217–220.

[9] E. Ayday, A. Einolghozati, and F. Fekri, “BPRS: Belief propagation
based iterative recommender system,” in Proc. IEEE International

Symposium on Information Theory (ISIT), 2012, pp. 1992–1996.

[10] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. UAI, 1998.

